Package: plspm (via r-universe)

November 3, 2024

```
Type Package
Title Tools for Partial Least Squares Path Modeling (PLS-PM)
Version 0.4.9
Date 2015-07-14
Description Partial Least Squares Path Modeling (PLS-PM) analysis for
      both metric and non-metric data, as well as REBUS analysis for
      latent class detection.
URL https://github.com/gastonstat/plspm
BugReports https://github.com/gastonstat/plspm/issues
Depends R (>= 3.0.1)
Imports tester, turner, diagram, shape, amap
Suggests plsdepot, FactoMineR, ggplot2, reshape, testthat, knitr
VignetteBuilder knitr
License GPL-3
LazyLoad yes
Collate 'plspm.r' 'auxiliar.r' 'check arguments.r'
      'check_specifications.r' 'get_alpha.r' 'get_ave.r'
      'get_boots.r' 'get_dummies.r' 'get_effects.r' 'get_generals.r'
      'get_gof.r' 'get_inner_summary.r' 'get_manifests.r'
      'get_metric.r' 'get_nom_scale.r' 'get_num_scale.r'
      'get ord scale.r' 'get path scheme.r' 'get paths.r'
      'get_plsr1.r' 'get_PLSRdoubleQ.r' 'get_rank.r' 'get_rho.r'
      'get_scores.r' 'get_treated_data.r' 'get_unidim.r'
```

'get_weights.r' 'get_weights_nonmetric.r' 'innerplot.r' 'outerplot.r' 'plot.plspm.r' 'rescale.r' 'summary_plspm.r'

'local.models.r' 'print.rebus.r' 'rebus.pls.r' 'rebus.test.r' 'res.clus.r' 'get_PLSR.r' 'get_PLSR_NA.r' 'quantiplot.r'

'test_manifest_scaling.r' 'test_null_weights.r' 'unidimensionality.r' 'test_factors.r' 'russett-data.r' 'plspm.fit.r' 'plspm.groups.r' 'test_dataset.r' 'get_GQI.r'

'get locals test.r' 'get scaled data.r' 'it.reb.r'

'plspm-package.r'

2 Contents

Repository https://gastonstat.r-universe.dev

 $\pmb{RemoteUrl}\ \ https://github.com/gastonstat/plspm$

RemoteRef HEAD

RemoteSha bd21cb153021aed6ac6ea51ecbd0b856495b2a16

Contents

Index

alpha
arizona
cereals
college
futbol
innerplot
it.reb
local.models
mobile
offense
orange
outerplot
plot.plspm
plspm
plspm.fit
plspm.groups
quantiplot
rebus.pls
rebus.test
res.clus
rescale
rho
russa
russb
russett
satisfaction
simdata
spainfoot
technology
unidim
wines
72

44

alpha 3

alpha

Cronbach's alpha

Description

Cronbach's alpha of a single block of variables

Usage

alpha(X)

Arguments

Χ

matrix representing one block of manifest variables

Value

Cronbach's alpha

Author(s)

Gaston Sanchez

See Also

rho, unidim

```
## Not run:
    # load dataset satisfaction
    data(satisfaction)

# block Image (first 5 columns of satisfaction)
Image = satisfaction[,1:5]

# compute Cronbach's alpha for Image block
alpha(Image)

## End(Not run)
```

4 arizona

arizona Arizona vegetation dataset

Description

This dataset gives the measurements of 16 vegetation communities in the Santa Catalina Mountains, Arizona. The measurements were taken along different elevations from fir forest at high elevations, through pine forest, woodlands, and desert grassland.

Usage

arizona

Format

A data frame with 16 observations and 8 variables. The variables refer to three latent concepts: 1) ENV=environment, 2) SOIL=soil, and 3) DIV=diversity.

Num	Variable	Description	Concept
1	env.elev	Elevation (m)	environment
2	env.incli	Terrain inclination (degrees)	environment
3	soil.ph	Acidity and base saturation	soil
4	soil.orgmat	Organic matter content (perc)	soil
5	soil.nitro	Nitrogen content (perc)	soil
6	div.trees	Number of species of trees	diversity
7	div.shrubs	Numer of species of shrubs	diversity
8	div.herbs	Number of species of herbs	diversity

The complete name of the rows are: 1) Abies lasiocarpa, 2) Abies concolor, 3) Pseudotsuga menziesii-Abies Concolor, 4) Pseudotsuga menziesii, 5) Pinus ponderosa-Pinus strobiformis, 6) Pinus ponderosa, 7) Pinus ponderosa-Quercus, 8) Pinus chihuahuana, 9) Pygmy conifer-oak scrub, 10) Open oak woodland, 11) Bouteloua curtipendula, 12) Spinose-suffrutescent, 13) Cercidium microphyllum, 14) Larrea divaricata, 15) Cercocarpus breviflorus, 16) Populus tremuloides.

Source

Mixed data from Whittaker et al (1968), and Whittaker and Niering (1975). See References below.

References

Whittaker, R. H., Buol, S. W., Niering, W. A., and Havens, Y. H. (1968) A Soil and Vegetation Pattern in the Santa Catalina Mountains, Arizona. *Soil Science*, **105**, pp. 440-450.

Whittaker, R. H., and Niering, W. A. (1975) Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, Production, and Diversity Along the Elevation Gradient. *Ecology*, **56**, pp. 771-790.

cereals 5

Examples

```
data(arizona)
arizona
```

cereals

Cereals datset

Description

Data with several variables of different brands of cereal

Usage

```
data(cereals)
```

Format

```
A data frame with 77 observations on the following 15 variables.
```

```
mfr Manufacturer of cereal
type type: cold or hot
calories calories per serving
protein grams of protein
fat grams of fat
sodium milligrams of sodium
fiber grams of dietary fiber
carbo grams of complex carbohydrates
sugars grams of sugars
potass milligrams of potassium
vitamins vitamins and minerals - 0, 25, or 100, indicating the typical percentage of FDA recommended
shelf display shelf (1, 2, or 3, counting from the floor)
weight weight in ounces of one serving
cups number of cups in one serving
rating a rating of the cereals
```

Source

```
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
```

References

```
http://lib.stat.cmu.edu/DASL/Stories/HealthyBreakfast.html
```

6 college

Examples

```
# load data
data(cereals)
```

take a peek
head(cereals)

college

College datasets

Description

Dataset with different scores (high school, undergrad basic, undergrad intermediate, and GPA) of graduated college student in life sciences majors

Usage

data(college)

Format

A data frame with 352 students on the following 13 variables. The variables may be used to construct four suggested latent concepts: 1) HighSchool=High School related scores, 2) Basic=scores of basic courses, 3) InterCourse=Scores of intermediate courses, 4) GPA=Final GPA (Graduate Point Average)

Num	Variable	Description	Concept
1	HS_GPA	High School GPA	HighSchool
2	SAT_Verbal	Verbal SAT score	HighSchool
3	SAT_Math	Math SAT score	HighSchool
4	Biology1	Introductory Biology	BasicCourses
5	Chemistry1	Introductoy Chemistry	BasicCourses
6	Math1	Calculus 1	BasicCourses
7	Physics1	Introductory Physics	BasicCourses
8	Biology2	Intermediate Biology	InterCourses
9	Chemistry2	Intermediate Chemistry	InterCourses
10	Math2	Calculus 2	InterCourses
11	Physics2	Intermediate Physics	InterCourses
12	FinalGPA	Graduation GPA	FinalGPA
13	Gender	Gender	none

Examples

load data
data(college)

take a peek
head(college)

futbol 7

futbol

Futbol dataset from Spain-England-Italy

Description

This data set contains the results of the teams in the Spanish, English, and Italian football leagues 2009-2010 season.

Usage

data(futbol)

Format

A data frame with 60 observations on the following 12 variables. The variables may be used to construct three latent concepts: 1) ATTACK=Attack, 2) DEFENSE=Defense, 3) SUCCESS=Success.

Num	Variable	Description	Concept
1	GSH: Goals Scored at Home	total number of goals scored at home	ATTACK
2	GSA: Goals Scored Away	total number of goals scored away	ATTACK
3	SSH: Success to Score at Home	percentage of matches with scores goals at home	ATTACK
4	SSA: Success to Score Away	percentage of matches with scores goals away	ATTACK
5	NGCH: Goals Conceded at Home	total number (negative) of goals conceded at home	DEFENSE
6	NGCA: Goals Conceded Away	total number (negative) of goals conceded away	DEFENSE
7	CSH: Clean Sheets at Home	percentage of matches with no conceded goals at home	DEFENSE
8	CSA: Clean Sheets Away	percentage of matches with no conceded goals away	DEFENSE
9	WMH: Won Matches at Home	total number of matches won at home	SUCCESS
10	WMA: Won Matches Away	total number of matches won away	SUCCESS
11	Country: Leangue Country	country of the team's league	none
12	Rank: Rank Position	final ranking position within its league	none

Source

```
League Day. http://www.leagueday.com
Statto.http://www.statto.com
```

```
data(futbol)
futbol
```

8 innerplot

innerplot	Plot inner model	
-----------	------------------	--

Description

Plot the inner (structural) model for objects of class "plspm", as well as path matrices

Usage

```
innerplot(x, colpos = "#6890c4BB", colneg = "#f9675dBB",
  box.prop = 0.55, box.size = 0.08, box.cex = 1,
  box.col = "gray95", lcol = "gray95", box.lwd = 2,
  txt.col = "gray50", shadow.size = 0, curve = 0,
  lwd = 3, arr.pos = 0.5, arr.width = 0.2, arr.lwd = 3,
  cex.txt = 0.9, show.values = FALSE, ...)
```

Arguments

х	Either a matrix defining an inner model or an object of class "plspm".
colpos	Color of arrows for positive path coefficients.
colneg	Color of arrows for negative path coefficients.
box.prop	Length/width ratio of ellipses.
box.size	Size of ellipses.
box.cex	Relative size of text in ellipses.
box.col	fill color of ellipses,
lcol	border color of ellipses.
box.lwd	line width of the box.
txt.col	color of text in ellipses.
shadow.size	Relative size of shadow of label box.
curve	arrow curvature.
lwd	line width of arrow.
arr.pos	Relative position of arrowheads on arrows.
arr.width	arrow width.
arr.lwd	line width of arrow, connecting two different points, (one value, or a matrix with same dimensions as x).
cex.txt	Relative size of text on arrows.
show.values	should values be shown when x is a matrix.
	Further arguments passed on to plotmat.

Note

innerplot uses the function plotmat in package diagram.
http://cran.r-project.org/web/packages/diagram/vignettes/diagram.pdf

it.reb 9

See Also

plot.plspm, outerplot

it.reb

Iterative steps of Response-Based Unit Segmentation (REBUS)

Description

REBUS-PLS is an iterative algorithm for performing response based clustering in a PLS-PM framework. it.reb allows to perform the iterative steps of the REBUS-PLS Algorithm. It provides summarized results for final local models and the final partition of the units. Before running this function, it is necessary to run the res.clus function to choose the number of classes to take into account.

Usage

```
it.reb(pls, hclus.res, nk, Y = NULL, stop.crit = 0.005,
  iter.max = 100)
```

Arguments

pls	an object of class "plspm"
hclus.res	object of class "res.clus" returned by res.clus
nk	integer larger than 1 indicating the number of classes. This value should be defined according to the dendrogram obtained by performing res.clus.
Υ	optional data matrix used when pls\$data is NULL
stop.crit	Number indicating the stop criterion for the iterative algorithm. It is suggested to use the threshold of less than 0.05% of units changing class from one iteration to the other as stopping rule.
iter.max	integer indicating the maximum number of iterations

Value

an object of class "rebus"

loadings	Matrix of standardized loadings (i.e. correlations with LVs.) for each local model
path.coefs	Matrix of path coefficients for each local model
quality	Matrix containing the average communalities, the average redundancies, the R2 values, and the GoF index for each local model
segments	Vector defining the class membership of each unit
origdata.clas	The numeric matrix with original data and with a new column defining class membership of each unit

10 it.reb

Author(s)

Laura Trinchera, Gaston Sanchez

References

Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., and Tenenhaus, M. (2008) REBUS-PLS: A Response-Based Procedure for detecting Unit Segments in PLS Path Modeling. *Applied Stochastic Models in Business and Industry (ASMBI)*, **24**, pp. 439-458.

Trinchera, L. (2007) Unobserved Heterogeneity in Structural Equation Models: a new approach to latent class detection in PLS Path Modeling. *Ph.D. Thesis*, University of Naples "Federico II", Naples, Italy.

http://www.fedoa.unina.it/2702/1/Trinchera_Statistica.pdf

See Also

```
plspm, rebus.pls, res.clus
```

```
## Example of REBUS PLS with simulated data
# load simdata
data("simdata", package='plspm')
# Calculate global plspm
sim_inner = matrix(c(0,0,0,0,0,0,1,1,0), 3, 3, byrow=TRUE)
dimnames(sim_inner) = list(c("Price", "Quality", "Satisfaction"),
                           c("Price", "Quality", "Satisfaction"))
sim_outer = list(c(1,2,3,4,5), c(6,7,8,9,10), c(11,12,13))
sim_mod = c("A", "A", "A") # reflective indicators
sim_global = plspm(simdata, sim_inner,
                   sim_outer, modes=sim_mod)
sim_global
## Then compute cluster analysis on residuals of global model
sim_clus = res.clus(sim_global)
## To complete REBUS, run iterative algorithm
rebus_sim = it.reb(sim_global, sim_clus, nk=2,
                   stop.crit=0.005, iter.max=100)
## You can also compute complete outputs
## for local models by running:
local_rebus = local.models(sim_global, rebus_sim)
# Display plspm summary for first local model
summary(local_rebus$loc.model.1)
## End(Not run)
```

local.models 11

|--|

Description

Calculates PLS-PM for global and local models from a given partition

Usage

```
local.models(pls, y, Y = NULL)
```

Arguments

pls	An object of class "plspm"
У	One object of the following classes: "rebus", "integer", or "factor", that provides the class partitions.
Υ	Optional dataset (matrix or data frame) used when argument dataset=NULL inside pls.

Details

local.models calculates PLS-PM for the global model (i.e. over all observations) as well as PLS-PM for local models (i.e. observations of different partitions).

When y is an object of class "rebus", local.models is applied to the classes obtained from the REBUS algorithm.

When y is an integer vector or a factor, the values or levels are assumed to represent the group to which each observation belongs. In this case, the function local models calculates PLS-PM for the global model, as well as PLS-PM for each group (local models).

When the object pls does not contain a data matrix (i.e. pls\$data=NULL), the user must provide the data matrix or data frame in Y.

The original parameters modes, scheme, scaled, tol, and iter from the object pls are taken.

Value

An object of class "local.models", basically a list of length k+1, where k is the number of classes.

glob.model	PLS-PM of the global model
loc.model.1	PLS-PM of segment (class) 1
loc.model.2	PLS-PM of segment (class) 2
loc.model.k	PLS-PM of segment (class) k

Note

Each element of the list is an object of class "plspm". Thus, in order to examine the results for each local model, it is necessary to use the summary function.

12 mobile

Author(s)

Laura Trinchera, Gaston Sanchez

See Also

```
rebus.pls
```

Examples

```
## Not run:
## Example of REBUS PLS with simulated data
# load simdata
data("simdata", package='plspm')
# Calculate global plspm
sim\_inner = matrix(c(0,0,0,0,0,0,1,1,0), 3, 3, byrow=TRUE)
\label{eq:continuous} \begin{array}{ll} \mbox{dimnames(sim\_inner) = list(c("Price", "Quality", "Satisfaction"),} \\ & \mbox{c("Price", "Quality", "Satisfaction"))} \end{array}
sim_outer = list(c(1,2,3,4,5), c(6,7,8,9,10), c(11,12,13))
sim_mod = c("A", "A", "A") # reflective indicators
sim_global = plspm(simdata, sim_inner,
                     sim_outer, modes=sim_mod)
sim_global
## Then compute cluster analysis on residuals of global model
sim_clus = res.clus(sim_global)
## To complete REBUS, run iterative algorithm
rebus_sim = it.reb(sim_global, sim_clus, nk=2,
                     stop.crit=0.005, iter.max=100)
## You can also compute complete outputs
## for local models by running:
local_rebus = local.models(sim_global, rebus_sim)
# Display plspm summary for first local model
summary(local_rebus$loc.model.1)
## End(Not run)
```

mobile

ECSI Mobile Phone Provider dataset

Description

This table contains data from the article by Tenenhaus et al. (2005), see reference below.

mobile 13

Usage

data(mobile)

Format

A data frame with 250 observations on 24 variables on a scale from 0 to 100. The variables refer to seven latent concepts: 1) IMAG=Image, 2) EXPE=Expectations, 3) QUAL=Quality, 4) VAL=Value, 5) SAT=Satisfaction, 6) COM=Complaints, and 7) LOY=Loyalty.

IMAG: Includes variables such as reputation, trustworthiness, seriousness, and caring about customer's needs.

EXPE: Includes variables such as products and services provided and expectations for the overall quality.

QUAL: Includes variables such as reliable products and services, range of products and services, and overall perceived quality.

VAL: Includes variables such as quality relative to price, and price relative to quality.

SAT: Includes variables such as overall rating of satisfaction, fulfillment of expectations, satisfaction relative to other phone providers.

COM: Includes one variable defining how well or poorly custmer's complaints were handled.

LOY: Includes variables such as propensity to choose the same phone provider again, propensity to switch to other phone provider, intention to recommend the phone provider to friends.

- ima1 First MV of the block Image
- ima2 Second MV of the block Image
- ima3 Third MV of the block Image
- ima4 Fourth MV of the block Image
- ima5 Fifth MV of the block Image
- exp1 First MV of the block Expectations
- exp2 Second MV of the block Expectations
- exp3 Third MV of the block Expectations
- qua1 First MV of the block Quality
- qua2 Second MV of the block Quality
- qua3 Third MV of the block Quality
- qua4 Fourth MV of the block Quality
- qua5 Fifth MV of the block Quality
- qua6 Sixth MV of the block Quality
- qua7 Seventh MV of the block Quality
- val1 First MV of the block Value
- val2 Second MV of the block Value
- sat1 First MV of the block Satisfaction
- sat2 Second MV of the block Satisfaction
- sat3 Third MV of the block Satisfaction

14 offense

comp First MV of the block Complaints

loy1 First MV of the block Loyalty

loy2 Second MV of the block Loyalty

loy3 Third MV of the block Loyalty

References

Tenenhaus, M., Esposito Vinzi, V., Chatelin Y.M., and Lauro, C. (2005) PLS path modeling. *Computational Statistics & Data Analysis*, **48**, pp. 159-205.

Examples

data(mobile)

Description

Dataset with offense statistics of American football teams from the NFL (2010-2011 season).

Usage

data(offense)

Format

A data frame with 32 teams on the following 17 variables. The variables may be used to construct five suggested latent concepts: 1) RUSH=Rushing Quality, 2) PASS=Passing Quality, 3) SPEC=Special Teams and Other, 4) SCORING=Scoring Success, 5)OFFENSE=Offense Performance

Num	Variable	Description	Concept
1	YardsRushAtt	Yards per Rush Attempt	RUSH
2	RushYards	Rush Yards per game	RUSH
3	RushFirstDown	Rush First Downs per game	RUSH
4	YardsPassComp	Yards Pass Completion	PASS
5	PassYards	Passed Yards per game	PASS
6	PassFirstDown	Pass First Downs per game	PASS
7	FieldGoals	Field Goals per game	SPEC
8	OtherTDs	Other Touchdowns (non-offense) per game	SPEC
9	PointsGame	Points per game	SCORING
10	OffensTD	Offense Touchdowns per game	SCORING
11	TDGame	Touchdowns per game	SCORING
12	PassTDG	Passing Touchdowns per game	OFFENSE
13	RushTDG	Rushing Touchdowns per game	OFFENSE
14	PlaysGame	Plays per game	OFFENSE

orange 15

15	YardsPlay	Yards per Play	OFFENSE
16	FirstDownPlay	First Downs per Play	OFFENSE
17	OffTimePossPerc	Offense Time Possession Percentage	OFFENSE

Source

http://www.teamrankings.com/nfl/stats/

Examples

```
# load data
data(offense)
```

take a peek
head(offense)

orange

Orange Juice dataset

Description

This data set contains the physico-chemical, sensory and hedonic measurements of 6 orange juices.

Usage

orange

Format

A data frame with 6 observations and 112 variables. The variables refer to three latent concepts: 1) PHYCHEM=Physico-Chemical, 2) SENSORY=Sensory, and 3) HEDONIC=Hedonic.

Num	Variable glucose	Description Glucose (g/l)	Concept physico-chemical
2	fructose	Fructose (g/l)	physico-chemical
3	saccharose	Saccharose (g/l)	physico-chemical
4	sweet.power	Sweetening power (g/l)	physico-chemical
5	ph1	pH before processing	physico-chemical
6	ph2	pH after centrifugation	physico-chemical
7	titre	Titre (meq/l)	physico-chemical
8	citric.acid	Citric acid (g/l)	physico-chemical
9	vitamin.c	Vitamin C (mg/100g)	physico-chemical
10	smell.int	Smell intensity	sensory
11	odor.typi	Odor typicity	sensory
12	pulp	Pulp	sensory
13	taste.int	Taste intensity	sensory
14	acidity	Acidity	sensory

16 outerplot

15	bitter	Bitterness	sensory
16	sweet	Sweetness	sensory
17	judge1	Ratings of judge 1	hedonic
18	judge2	Ratings of judge 2	hedonic
		•••	
112	judge96	Ratings of judge 96	hedonic

Source

Laboratoire de Mathematiques Appliques, Agrocampus, Rennes.

References

Tenenhaus, M., Pages, J., Ambroisine, L., and Guinot, C. (2005) PLS methodology to study relationships between hedonic jedgements and product characteristics. *Food Quality and Preference*, **16**(4), pp. 315-325.

Pages, J., and Tenenhaus, M. (2001) Multiple factor analysis combined with PLS path modelling. Application to the analysis of relationships between physicochemical, sensory profiles and hedonic judgements. *Chemometrics and Intelligent Laboratory Systems*, **58**, pp. 261-273.

Pages, J. (2004) Multiple Factor Analysis: Main Features and Application to Sensory Data. *Revista Colombiana de Estadistica*, **27**, pp. 1-26.

Examples

```
data(orange)
orange
```

outerplot

Plot outer model

Description

Plot either outer weights or loadings in the outer model for objects of class "plspm"

Usage

```
outerplot(x, what = "loadings", colpos = "#6890c4BB",
  colneg = "#f9675dBB", box.prop = 0.55, box.size = 0.08,
  box.cex = 1, box.col = "gray95", lcol = "gray95",
  box.lwd = 2, txt.col = "gray40", shadow.size = 0,
  curve = 0, lwd = 2, arr.pos = 0.5, arr.width = 0.15,
  cex.txt = 0.9, ...)
```

plot.plspm 17

Arguments

X	An object of class "plspm".
what	What to plot: "loadings" or "weights".
colpos	Color of arrows for positive path coefficients.
colneg	Color of arrows for negative path coefficients.
box.prop	Length/width ratio of ellipses and rectangles.
box.size	Size of ellipses and rectangles.
box.cex	Relative size of text in ellipses and rectangles.
box.col	fill color of ellipses and rectangles.
lcol	border color of ellipses and rectangles.
box.lwd	line width of the box.
txt.col	color of text in ellipses and rectangles.
shadow.size	Relative size of shadow of label box.
curve	arrow curvature.
lwd	line width of arrow.
arr.pos	Relative position of arrowheads on arrows.
arr.width	arrow width.
cex.txt	Relative size of text on arrows.

Note

. . .

```
outerplot uses the function plotmat of package diagram.
http://cran.r-project.org/web/packages/diagram/vignettes/diagram.pdf
```

Further arguments passed on to plotmat.

See Also

```
innerplot, plot.plspm, plspm
```

plot.plspm	Plots for PLS Path Models

Description

Plot method for objects of class "plspm". This function plots either the inner (i.e. structural) model with the estimated path coefficients, or the outer (i.e. measurement) model with loadings or weights.

18 plot.plspm

Usage

```
## S3 method for class 'plspm'
plot(x, what = "inner",
    colpos = "#6890c4BB", colneg = "#f9675dBB",
    box.prop = 0.55, box.size = 0.08, box.cex = 1,
    box.col = "gray95", lcol = "gray95",
    txt.col = "gray40", arr.pos = 0.5, cex.txt = 0.9, ...)
```

Arguments

x	An object of class "plspm".
what	What to plot: "inner", "loadings", "weights".
colpos	Color of arrows for positive path coefficients.
colneg	Color of arrows for negative path coefficients.
box.prop	Length/width ratio of ellipses and rectangles.
box.size	Size of ellipses and rectangles.
box.cex	Relative size of text in ellipses and rectangles.
box.col	fill color of ellipses and rectangles.
lcol	border color of ellipses and rectangles.
txt.col	color of text in ellipses and rectangles.
arr.pos	Relative position of arrowheads on arrows.
cex.txt	Relative size of text on arrows.
	Further arguments passed on to plotmat.

Details

```
plot.plspm is just a wraper of innerplot and outerplot.
```

Note

```
Function plot.plspm is based on the function plotmat of package diagram. 
http://cran.r-project.org/web/packages/diagram/vignettes/diagram.pdf
```

See Also

```
innerplot, outerplot, plspm
```

```
## Not run:
## typical example of PLS-PM in customer satisfaction analysis
## model with six LVs and reflective indicators
# load data satisfaction
data(satisfaction)
# define inner model matrix
```

plspm 19

```
IMAG = c(0,0,0,0,0,0)
EXPE = c(1,0,0,0,0,0)
QUAL = c(0,1,0,0,0,0)
VAL = c(0,1,1,0,0,0)
SAT = c(1,1,1,1,0,0)
LOY = c(1,0,0,0,1,0)
sat.inner = rbind(IMAG, EXPE, QUAL, VAL, SAT, LOY)
# define outer model list
sat.outer = list(1:5, 6:10, 11:15, 16:19, 20:23, 24:27)
# define vector of reflective modes
sat.mod = rep("A", 6)
# apply plspm
satpls = plspm(satisfaction, sat.inner, sat.outer, sat.mod, scheme="centroid",
              scaled=FALSE)
# plot path coefficients
plot(satpls, what="inner")
# plot loadings
plot(satpls, what="loadings")
# plot outer weights
plot(satpls, what="weights")
## End(Not run)
```

plspm

PLS-PM: Partial Least Squares Path Modeling

Description

Estimate path models with latent variables by partial least squares approach (for both metric and non-metric data)

Estimate path models with latent variables by partial least squares approach (for both metric and non-metric data)

Usage

```
plspm(Data, path_matrix, blocks, modes = NULL,
    scaling = NULL, scheme = "centroid", scaled = TRUE,
    tol = 1e-06, maxiter = 100, plscomp = NULL,
    boot.val = FALSE, br = NULL, dataset = TRUE)
```

20 plspm

Arguments

Data	matrix or data frame containing the manifest variables.
path_matrix	A square (lower triangular) boolean matrix representing the inner model (i.e. the path relationships between latent variables).
blocks	list of vectors with column indices or column names from Data indicating the sets of manifest variables forming each block (i.e. which manifest variables correspond to each block).
scaling	optional argument for runing the non-metric approach; it is a list of string vectors indicating the type of measurement scale for each manifest variable specified in blocks. scaling must be specified when working with non-metric variables. Possible values: "num" (linear transformation, suitable for numerical variables), "raw" (no transformation), "nom" (non-monotonic transformation, suitable for nominal variables), and "ord" (monotonic transformation, suitable for ordinal variables).
modes	character vector indicating the type of measurement for each block. Possible values are: "A", "B", "newA", "PLScore", "PLScow". The length of modes must be equal to the length of blocks.
scheme	string indicating the type of inner weighting scheme. Possible values are "centroid", "factorial", or "path".
scaled	whether manifest variables should be standardized. Only used when scaling = NULL. When (TRUE, data is scaled to standardized values (mean=0 and variance=1). The variance is calculated dividing by N instead of N-1).
tol	decimal value indicating the tolerance criterion for the iterations (tol=0.000001). Can be specified between 0 and 0.001.
maxiter	integer indicating the maximum number of iterations (maxiter=100 by default). The minimum value of maxiter is 100.
plscomp	optional vector indicating the number of PLS components (for each block) to be used when handling non-metric data (only used if scaling is provided)
boot.val	whether bootstrap validation should be performed. (FALSE by default).
br	number bootstrap resamples. Used only when boot.val=TRUE. When boot.val=TRUE, the default number of re-samples is 100 .
dataset	whether the data matrix used in the computations should be retrieved (TRUE by default).

Details

The function plspm estimates a path model by partial least squares approach providing the full set of results.

The argument path_matrix is a matrix of zeros and ones that indicates the structural relationships between latent variables. path_matrix must be a lower triangular matrix; it contains a 1 when column j affects row i, 0 otherwise.

• plspm: Partial Least Squares Path Modeling

plspm 21

- plspm. fit: Simple version for PLS-PM
- plspm. groups: Two Groups Comparison in PLS-PM
- rebus.pls: Response Based Unit Segmentation (REBUS)

Value

An object of class "plspm".

outer_model	Results of the outer model. Includes: outer weights, standardized loadings, communalities, and redundancies
inner_model	Results of the inner (structural) model. Includes: path coeffs and R-squared for each endogenous latent variable
scores	Matrix of latent variables used to estimate the inner model. If scaled=FALSE then scores are latent variables calculated with the original data (non-stardardized).
path_coefs	Matrix of path coefficients (this matrix has a similar form as path_matrix)
crossloadings	Correlations between the latent variables and the manifest variables (also called crossloadings)
inner_summary	Summarized results of the inner model. Includes: type of LV, type of measurement, number of indicators, R-squared, average communality, average redundancy, and average variance extracted
effects	Path effects of the structural relationships. Includes: direct, indirect, and total effects
unidim	Results for checking the unidimensionality of blocks (These results are only meaningful for reflective blocks)
gof	Goodness-of-Fit index
data	Data matrix containing the manifest variables used in the model. Only available

Author(s)

boot

Gaston Sanchez, Giorgio Russolillo

when dataset=TRUE

References

Tenenhaus M., Esposito Vinzi V., Chatelin Y.M., and Lauro C. (2005) PLS path modeling. *Computational Statistics & Data Analysis*, **48**, pp. 159-205.

List of bootstrapping results; only available when argument boot.val=TRUE

Lohmoller J.-B. (1989) *Latent variables path modeling with partial least squares*. Heidelberg: Physica-Verlag.

Wold H. (1985) Partial Least Squares. In: Kotz, S., Johnson, N.L. (Eds.), *Encyclopedia of Statistical Sciences*, Vol. 6. Wiley, New York, pp. 581-591.

Wold H. (1982) Soft modeling: the basic design and some extensions. In: K.G. Joreskog & H. Wold (Eds.), *Systems under indirect observations: Causality, structure, prediction*, Part 2, pp. 1-54. Amsterdam: Holland.

Russolillo, G. (2012) Non-Metric Partial Least Squares. *Electronic Journal of Statistics*, **6**, pp. 1641-1669. http://projecteuclid.org/euclid.ejs/1348665231

22 plspm.fit

See Also

```
innerplot, outerplot,
```

```
## Not run:
## typical example of PLS-PM in customer satisfaction analysis
## model with six LVs and reflective indicators
# load dataset satisfaction
data(satisfaction)
# path matrix
IMAG = c(0,0,0,0,0,0)
EXPE = c(1,0,0,0,0,0)
QUAL = c(0,1,0,0,0,0)
VAL = c(0,1,1,0,0,0)
SAT = c(1,1,1,1,0,0)
LOY = c(1,0,0,0,1,0)
sat_path = rbind(IMAG, EXPE, QUAL, VAL, SAT, LOY)
# plot diagram of path matrix
innerplot(sat_path)
# blocks of outer model
sat_blocks = list(1:5, 6:10, 11:15, 16:19, 20:23, 24:27)
# vector of modes (reflective indicators)
sat_mod = rep("A", 6)
# apply plspm
satpls = plspm(satisfaction, sat_path, sat_blocks, modes = sat_mod,
   scaled = FALSE)
# plot diagram of the inner model
innerplot(satpls)
# plot loadings
outerplot(satpls, what = "loadings")
# plot outer weights
outerplot(satpls, what = "weights")
## End(Not run)
```

plspm.fit 23

Description

Estimate path models with latent variables by partial least squares approach without providing the full list of results as plspm(). This might be helpful when doing simulations, intensive computations, or when you don't want the whole enchilada.

Usage

```
plspm.fit(Data, path_matrix, blocks, modes = NULL,
    scaling = NULL, scheme = "centroid", scaled = TRUE,
    tol = 1e-06, maxiter = 100, plscomp = NULL)
```

Arguments

Data	matrix or data frame containing the manifest variables.
path_matrix	A square (lower triangular) boolean matrix representing the inner model (i.e. the path relationships betwenn latent variables).
blocks	list of vectors with column indices or column names from Data indicating the sets of manifest variables forming each block (i.e. which manifest variables correspond to each block).
scaling	optional list of string vectors indicating the type of measurement scale for each manifest variable specified in blocks. scaling must be specified when working with non-metric variables.
modes	character vector indicating the type of measurement for each block. Possible values are: "A", "B", "newA", "PLScore", "PLScow". The length of modes must be equal to the length of blocks.
scheme	string indicating the type of inner weighting scheme. Possible values are "centroid", "factorial", or "path".
scaled	whether manifest variables should be standardized. Only used when scaling = NULL. When (TRUE data is scaled to standardized values (mean=0 and variance=1). The variance is calculated dividing by N instead of N-1).
tol	decimal value indicating the tolerance criterion for the iterations (tol=0.000001). Can be specified between 0 and 0.001.
maxiter	integer indicating the maximum number of iterations (maxiter=100 by default). The minimum value of maxiter is 100.
plscomp	optional vector indicating the number of PLS components (for each block) to be used when handling non-metric data (only used if scaling is provided)

Details

plspm.fit performs the basic PLS algorithm and provides limited results (e.g. outer model, inner model, scores, and path coefficients).

The argument path_matrix is a matrix of zeros and ones that indicates the structural relationships between latent variables. path_matrix must be a lower triangular matrix; it contains a 1 when column j affects row i, 0 otherwise.

24 plspm.fit

Value

An object of class "plspm".

outer_model Results of the outer model. Includes: outer weights, standardized loadings, com-

munalities, and redundancies

inner_model Results of the inner (structural) model. Includes: path coeffs and R-squared for

each endogenous latent variable

scores Matrix of latent variables used to estimate the inner model. If scaled=FALSE

then scores are latent variables calculated with the original data (non-stardardized).

If scaled=TRUE then scores and latents have the same values

path_coefs Matrix of path coefficients (this matrix has a similar form as path_matrix)

Author(s)

Gaston Sanchez, Giorgio Russolillo

References

Tenenhaus M., Esposito Vinzi V., Chatelin Y.M., and Lauro C. (2005) PLS path modeling. *Computational Statistics & Data Analysis*, **48**, pp. 159-205.

Lohmoller J.-B. (1989) *Latent variables path modeling with partial least squares*. Heidelberg: Physica-Verlag.

Wold H. (1985) Partial Least Squares. In: Kotz, S., Johnson, N.L. (Eds.), *Encyclopedia of Statistical Sciences*, Vol. 6. Wiley, New York, pp. 581-591.

Wold H. (1982) Soft modeling: the basic design and some extensions. In: K.G. Joreskog & H. Wold (Eds.), *Systems under indirect observations: Causality, structure, prediction*, Part 2, pp. 1-54. Amsterdam: Holland.

See Also

```
innerplot, plot.plspm,
```

```
## Not run:
## typical example of PLS-PM in customer satisfaction analysis
## model with six LVs and reflective indicators

# load dataset satisfaction
data(satisfaction)

# inner model matrix
IMAG = c(0,0,0,0,0,0)
EXPE = c(1,0,0,0,0,0)
QUAL = c(0,1,0,0,0,0)
VAL = c(0,1,1,0,0,0)
SAT = c(1,1,1,1,0,0)
LOY = c(1,0,0,0,1,0)
```

plspm.groups 25

```
sat_path = rbind(IMAG, EXPE, QUAL, VAL, SAT, LOY)

# outer model list
sat_blocks = list(1:5, 6:10, 11:15, 16:19, 20:23, 24:27)

# vector of reflective modes
sat_modes = rep("A", 6)

# apply plspm.fit
satpls = plspm.fit(satisfaction, sat_path, sat_blocks, sat_modes, scaled=FALSE)

# summary of results
summary(satpls)

# default plot (inner model)
plot(satpls)

## End(Not run)
```

plspm.groups

Two Groups Comparison in PLS-PM

Description

Performs a group comparison test for comparing path coefficients between two groups. The null and alternative hypotheses to be tested are: H0: path coefficients are not significantly different; H1: path coefficients are significantly different

Usage

```
plspm.groups(pls, group, Y = NULL, method = "bootstrap",
  reps = NULL)
```

Arguments

pls	object of class "plspm"
group	factor with 2 levels indicating the groups to be compared
Υ	optional dataset (matrix or data frame) used when argument dataset=NULL inside pls.
method	method to be used in the test. Possible values are "bootstrap" or "permutation"
reps	integer indicating the number of either bootstrap resamples or number of permutations. If NULL then reps=100

26 plspm.groups

Details

plspm.groups performs a two groups comparison test in PLS-PM for comparing path coefficients between two groups. Only two methods are available: 1) bootstrap, and 2) permutation. The bootstrap test is an adapted t-test based on bootstrap standard errors. The permutation test is a randomization test which provides a non-parametric option.

When the object pls does not contain a data matrix (i.e. pls\$data=NULL), the user must provide the data matrix or data frame in Y.

Value

An object of class "plspm.groups"

test Table with the results of the applied test. Includes: path coefficients of the global

model, path coeffs of group1, path coeffs of group2, (absolute) difference of path

coeffs between groups, and the test results with the p-value.

global List with inner model results for the global model

group1 List with inner model results for group1 group2 List with inner model results for group2

Author(s)

Gaston Sanchez

References

Chin, W.W. (2003) A permutation procedure for multi-group comparison of PLS models. In: Vilares M., Tenenhaus M., Coelho P., Esposito Vinzi V., Morineau A. (Eds.) *PLS and Related Methods - Proceedings of the International Symposium PLS03*. Decisia, pp. 33-43.

Chin, W.W. (2000) Frequently Asked Questions, Partial Least Squares PLS-Graph. Available from: http://disc-nt.cba.uh.edu/chin/plsfaq/multigroup.htm

See Also

plspm

```
## Not run:
## example with customer satisfaction analysis
## group comparison based on the segmentation variable "gender"

# load data satisfaction
data(satisfaction)

# define inner model matrix
IMAG = c(0,0,0,0,0,0)
EXPE = c(1,0,0,0,0,0)
QUAL = c(0,1,0,0,0,0)
VAL = c(0,1,1,0,0,0)
```

quantiplot 27

quantiplot

Quantification Plot

Description

Quantification Plots for Non-Metric PLS-PM

Usage

```
quantiplot(pls, lv = NULL, mv = NULL, pch = 16,
  col = "darkblue", lty = 2, ...)
```

Arguments

pls	a non-metric "plspm" object
lv	number or name of latent variable
mv	number or name of manifest variable
pch	Either an integer specifying a symbol or a single character to be used as the default in plotting points
col	color
lty	type of line
	Further arguments passed on to plot.

Details

If both lv and mv are specified, only the value of lv will be taken into account. If the given lv have more than 15 variables, only the first 15 are plotted.

28 rebus.pls

rebus.pls	Response Based Unit Segmentation (REBUS)	

Description

Performs all the steps of the REBUS-PLS algorithm. Starting from the global model, REBUS allows us to detect local models with better performance.

Usage

```
rebus.pls(pls, Y = NULL, stop.crit = 0.005,
  iter.max = 100)
```

Arguments

pls	Object of class "plspm"
Υ	Optional dataset (matrix or data frame) used when argument dataset=NULL inside pls.
stop.c	Number indicating the stop criterion for the iterative algorithm. Use a threshold of less than 0.05% of units changing class from one iteration to the other as stopping rule.
iter.m	integer indicating the maximum number of iterations.

Value

An object of class "rebus", basically a list with:

loadings	Matrix of standardized loadings (i.e. correlations with LVs.) for each local model.	
path.coefs	Matrix of path coefficients for each local model.	
quality	Matrix containing the average communalities, average redundancies, R2 values, and GoF values for each local model.	
segments	Vector defining for each unit the class membership.	
origdata.clas	The numeric matrix with original data and with a new column defining class membership of each unit.	

Author(s)

Laura Trinchera, Gaston Sanchez

rebus.test 29

References

Esposito Vinzi V., Trinchera L., Squillacciotti S., and Tenenhaus M. (2008) REBUS-PLS: A Response-Based Procedure for detecting Unit Segments in PLS Path Modeling. *Applied Stochastic Models in Business and Industry (ASMBI)*, **24**, pp. 439-458.

Trinchera, L. (2007) Unobserved Heterogeneity in Structural Equation Models: a new approach to latent class detection in PLS Path Modeling. *Ph.D. Thesis*, University of Naples "Federico II", Naples, Italy.

http://www.fedoa.unina.it/2702/1/Trinchera_Statistica.pdf

See Also

```
plspm, res.clus, it.reb, rebus.test, local.models
```

Examples

```
## Not run:
## typical example of PLS-PM in customer satisfaction analysis
## model with six LVs and reflective indicators
## example of rebus analysis with simulated data
# load data
data(simdata)
# Calculate plspm
sim_inner = matrix(c(0,0,0,0,0,1,1,0), 3, 3, byrow=TRUE)
dimnames(sim_inner) = list(c("Price", "Quality", "Satisfaction"),
                            c("Price", "Quality", "Satisfaction"))
sim_outer = list(c(1,2,3,4,5), c(6,7,8,9,10), c(11,12,13))
sim_mod = c("A", "A", "A") # reflective indicators
sim_global = plspm(simdata, sim_inner,
                   sim_outer, modes=sim_mod)
sim_global
# run rebus.pls and choose the number of classes
# to be taken into account according to the displayed dendrogram.
rebus_sim = rebus.pls(sim_global, stop.crit = 0.005, iter.max = 100)
# You can also compute complete outputs for local models by running:
local_rebus = local.models(sim_global, rebus_sim)
## End(Not run)
```

rebus.test

Permutation Test for REBUS Multi-Group Comparison

Description

Performs permutation tests for comparing pairs of groups from a REBUS object.

30 rebus.test

Usage

```
rebus.test(pls, reb, Y = NULL)
```

Arguments

pls	Object of class "plspm" returned by plspm
reb	Object of class "rebus" returned by either rebus.pls or it.reb.
Υ	Optional dataset (matrix or data frame) used when argument dataset=NULL inside pls.

Details

A permutation test on path coefficients, loadings, and GoF index is applied to the classes obtained from REBUS, by comparing two classes at a time. That is to say, a permutation test is applied on pair of classes. The number of permutations in each test is 100. In turn, the number of classes handled by rebus. test is limited to 6.

When pls\$data=NULL (there is no data matrix), the user must provide the data matrix or data frame in Y.

Value

An object of class "rebus.test", basically a list containing the results of each pair of compared classes. In turn, each element of the list is also a list with the results for the path coefficients, loadings, and GoF index.

Author(s)

Laura Trinchera, Gaston Sanchez

References

Chin, W.W. (2003) A permutation procedure for multi-group comparison of PLS models. In: Vilares M., Tenenhaus M., Coelho P., Esposito Vinzi V., Morineau A. (Eds.) *PLS and Related Methods - Proceedings of the International Symposium PLS03*. Decisia, pp. 33-43.

See Also

```
rebus.pls, local.models
```

```
## Not run:
## typical example of PLS-PM in customer satisfaction analysis
## model with six LVs and reflective indicators
## example of rebus analysis with simulated data
# load data
data(simdata)
```

res.clus 31

```
# Calculate plspm
sim_path = matrix(c(0,0,0,0,0,1,1,0), 3, 3, byrow=TRUE)
\label{eq:continuous} \mbox{dimnames(sim\_path) = list(c("Price", "Quality", "Satisfaction"),} \\
                             c("Price", "Quality", "Satisfaction"))
sim_blocks = list(c(1,2,3,4,5), c(6,7,8,9,10), c(11,12,13))
sim_mod = c("A", "A", "A") # reflective indicators
sim_global = plspm(simdata, sim_path,
                    sim_blocks, modes=sim_mod)
sim_global
# Cluster analysis on residuals of global model
sim_clus = res.clus(sim_global)
# Iterative steps of REBUS algorithm on 2 classes
rebus_sim = it.reb(sim_global, sim_clus, nk=2,
                    stop.crit=0.005, iter.max=100)
# apply rebus.test
sim_permu = rebus.test(sim_global, rebus_sim)
# inspect sim.rebus
sim_permu
sim_permu$test_1_2
# or equivalently
sim_permu[[1]]
## End(Not run)
```

res.clus

Clustering on communality and structural residuals

Description

Computes communality and structural residuals from a global PLS-PM model and performs a Hierarchical Cluster Analysis on these residuals according to the REBUS algorithm.

Usage

```
res.clus(pls, Y = NULL)
```

Arguments

Υ

pls Object of class "plspm"

Optional dataset (matrix or data frame) used when argument dataset=NULL inside pls.

32 res.clus

Details

res.clus() comprises the second and third steps of the REBUS-PLS Algorithm. It computes communality and structural residuals. Then it performs a Hierarchical Cluster Analysis on these residuals (step three of REBUS-PLS Algorithm). As a result, this function directly provides a dendrogram obtained from a Hierarchical Cluster Analysis.

Value

An Object of class "hclust" containing the results of the Hierarchical Cluster Analysis on the communality and structural residuals.

Author(s)

Laura Trinchera, Gaston Sanchez

References

Esposito Vinzi V., Trinchera L., Squillacciotti S., and Tenenhaus M. (2008) REBUS-PLS: A Response-Based Procedure for detecting Unit Segments in PLS Path Modeling. *Applied Stochastic Models in Business and Industry (ASMBI)*, **24**, pp. 439-458.

Trinchera, L. (2007) Unobserved Heterogeneity in Structural Equation Models: a new approach to latent class detection in PLS Path Modeling. *Ph.D. Thesis*, University of Naples "Federico II", Naples, Italy.

See Also

```
it.reb, plspm
```

rescale 33

rescale

Rescale Latent Variable Scores

Description

Rescale standardized latent variable scores to original scale of manifest variables

Usage

```
rescale(pls, data = NULL)
```

Arguments

pls object of class "plspm"

data Optional dataset (matrix or data frame) used when argument dataset=NULL in-

side pls.

Details

rescale requires all outer weights to be positive

Value

A data frame with the rescaled latent variable scores

Author(s)

Gaston Sanchez

See Also

plspm

```
## Not run:
## example with customer satisfaction analysis

# load data satisfaction
data(satisfaction)

# define inner model matrix
IMAG = c(0,0,0,0,0,0)
EXPE = c(1,0,0,0,0,0)
QUAL = c(0,1,0,0,0,0)
VAL = c(0,1,1,0,0,0)
SAT = c(1,1,1,1,0,0)
LOY = c(1,0,0,0,1,0)
sat_path = rbind(IMAG, EXPE, QUAL, VAL, SAT, LOY)
```

rho rho

rho

Dillon-Goldstein's rho

Description

Dillon-Goldstein's rho of a single block of variables

Usage

rho(X)

Arguments

Χ

matrix representing one block of manifest variables

Value

Dillon-Goldstein's rho

Author(s)

Gaston Sanchez

See Also

alpha, unidim

russa 35

Examples

```
## Not run:
    # load dataset satisfaction
    data(satisfaction)

# block Image (first 5 columns of satisfaction)
Image = satisfaction[,1:5]

# compute Dillon-Goldstein's rho for Image block
rho(Image)

## End(Not run)
```

russa

Russett A

Description

Russett dataset with variable demo as numeric variable

Format

A data frame with 47 rows and 9 columns

russb

Russett B

Description

Russett dataset with variable demo as factor

Format

A data frame with 47 rows and 9 columns

36 russett

russett Russett dataset

Description

Data set from Russett (1964) about agricultural inequality, industrial development and political instability.

Usage

data(russett)

Format

A data frame with 47 observations on the following 11 variables. The variables may be used to construct three latent concepts: 1) AGRIN=Agricultural Inequality, 2) INDEV=Industrial Development, 3) POLINS=Political Instability.

Num	Variable	Description	Concept
1	gini	Inequality of land distribution	AGRIN
2	farm	Percentage of farmers that own half of the land	AGRIN
3	rent	Percentage of farmers that rent all their land	AGRIN
4	gnpr	Gross national product per capita	INDEV
5	labo	Percentage of labor force employed in agriculture	INDEV
6	inst	Instability of executive (1945-1961)	POLINS
7	ecks	Number of violent internal war incidents (1941-1961)	POLINS
8	death	Number of people killed as a result of civic group violence (1950-1962)	POLINS
9	demostab	Political regime: stable democracy	POLINS
10	demoinst	Political regime: unstable democracy	POLINS
11	dictator	Political regime: dictatorship	POLINS

References

Russett B.M. (1964) Inequality and Instability: The Relation of Land Tenure to Politics. *World Politics* **16:3**, pp. 442-454.

Examples

data(russett)
russett

satisfaction 37

satisfaction

Satisfaction dataset

Description

This data set contains the variables from a customer satisfaction study of a Spanish credit institution on 250 customers.

Usage

satisfaction

Format

A data frame with 250 observations and 28 variables. Variables from 1 to 27 refer to six latent concepts: 1) IMAG=Image, 2) EXPE=Expectations, 3) QUAL=Quality, 4) VAL=Value, 5) SAT=Satisfaction, and 6) LOY=Loyalty. The last variable is a categorical variable indicating the gender of the individual.

IMAG: Includes variables such as reputation, trustworthiness, seriousness, solidness, and caring about customer's needs.

EXPE: Includes variables such as products and services provided, customer service, providing solutions, and expectations for the overall quality.

QUAL: Includes variables such as reliable products and services, range of products and services, personal advice, and overall perceived quality.

VAL: Includes variables such as beneficial services and products, valuable investments, quality relative to price, and price relative to quality.

SAT: Includes variables such as overall rating of satisfaction, fulfillment of expectations, satisfaction relative to other banks, and performance relative to customer's ideal bank.

LOY: Includes variables such as propensity to choose the same bank again, propensity to switch to other bank, intention to recommend the bank to friends, and sense of loyalty.

Source

Laboratory of Information Analysis and Modeling (LIAM). Facultat d'Informatica de Barcelona, Universitat Politecnica de Catalunya.

Examples

data(satisfaction)
satisfaction

38 simdata

simdata

Simulated data for REBUS with two groups

Description

Simulated data with two latent classes showing different local models.

Usage

data(simdata)

Format

A data frame of simulated data with 400 observations on the following 14 variables.

mv1 first manifest variable of the block Price Fairness

mv2 second manifest variable of the block Price Fairness

mv3 third manifest variable of the block Price Fairness

mv4 fourth manifest variable of the block Price Fairness

mv5 fifth manifest variable of the block Price Fairness

mv6 first manifest variable of the block Quality

mv7 second manifest variable of the block Quality

mv8 third manifest variable of the block Quality

mv9 fourth manifest variable of the block Quality

mv10 fifth manifest variable of the block Quality

mv11 first manifest variable of the block Customer Satisfaction

mv12 second manifest variable of the block Customer Satisfaction

mv13 third manifest variable of the block Customer Satisfaction

group a numeric vector

Details

The postulated model overlaps the one used by Jedidi *et al.* (1997) and by Esposito Vinzi *et al.* (2007) for their numerical examples. It is composed of one latent endogenous variable, *Customer Satisfaction*, and two latent exogenous variables, *Price Fairness* and *Quality*. Each latent exogenous variable (*Price Fairness* and *Quality*) has five manifest variables (reflective mode), and the latent endogenous variable (*Customer Satisfaction*) is measured by three indicators (reflective mode).

Two latent classes showing different local models are supposed to exist. Each one is composed of 200 units. Thus, the data on the aggregate level for each one of the numerical examples includes 400 units.

The simulation scheme involves working with local models that are different at both the measurement and the structural model levels. In particular, the experimental sets of data consist of two latent classes with the following characteristics:

spainfoot 39

(a) Class 1 - price fairness seeking customers - characterized by a strong relationship between *Price Fairness* and *Customer Satisfaction* (close to 0.9) and a weak relationship between *Quality* and *Customer Satisfaction* (close to 0.1), as well as by a weak correlation between the 3rd manifest variable of the *Price Fairness block* (mv3) and the corresponding latent variable;

(b) Class 2 - quality oriented customers - characterized by a strong relationship between *Quality* and *Customer Satisfaction* (close to 0.1) and a weak relationship between *Price Fairness* and *Customer Satisfaction* (close to 0.9), as well as by a weak correlation between the 3rd manifest variable (mv8) of the *Quality* block and the corresponding latent variable.

Source

Simulated data from Trinchera (2007). See References below.

References

Esposito Vinzi, V., Ringle, C., Squillacciotti, S. and Trinchera, L. (2007) Capturing and treating unobserved heterogeneity by response based segmentation in PLS path modeling. A comparison of alternative methods by computational experiments. *Working paper*, ESSEC Business School.

Jedidi, K., Jagpal, S. and De Sarbo, W. (1997) STEMM: A general finite mixture structural equation model. *Journal of Classification* **14**, pp. 23-50.

Trinchera, L. (2007) Unobserved Heterogeneity in Structural Equation Models: a new approach to latent class detection in PLS Path Modeling. *Ph.D. Thesis*, University of Naples "Federico II", Naples, Italy.

Examples

data(simdata) simdata

spainfoot

Spanish football dataset

Description

This data set contains the results of the teams in the Spanish football league 2008-2009.

Usage

spainfoot

Format

A data frame with 20 observations on 14 variables. The variables may be used to construct four latent concepts: 1) ATTACK=Attack, 2) DEFENSE=Defense, 3) SUCCESS=Success, 4) INDIS=Indiscipline.

NumVariableDescriptionConcept1GSHGoals Scored Home: total number of goals scored at homeATTACK

40 technology

2	GSA	Goals Scored Away: total number of goals scored away	ATTACK
3	SSH	Success to Score Home: Percentage of matches with scores goals at home	ATTACK
4	SSA	Success to Score Away: Percentage of matches with scores goals away	ATTACK
5	GCH	Goals Conceded Home: total number of goals conceded at home	DEFENSE
6	GCA	Goals Conceded Away: total number of goals conceded away	DEFENSE
7	CSH	Clean Sheets Home: percentage of matches with no conceded goals at home	DEFENSE
8	CSA	Clean Sheets Away: percentage of matches with no conceded goals away	DEFENSE
9	WMH	Won Matches Home: total number of won matches at home	SUCCESS
10	WMA	Won matches Away: total number of won matches away	SUCCESS
11	LWR	Longest Winning Run: longest run of won matches	SUCCESS
12	LRWR	Longest Run Without Loss: longest run of matches without losing	SUCCESS
13	YC	Yellow Cards: total number of yellow cards	INDIS
14	RC	Red Cards: total number of red cards	INDIS

Source

League Day. http://www.leagueday.com Statto. http://www.statto.com BDFutbol. http://www.statto.com Cero a cero. http://www.ceroacero.es/

Examples

data(spainfoot)
spainfoot

technology

Technology data set

Description

This data set contains the variables from a "user and acceptance of technology" model on 300 users.

Usage

data(technology)

Format

A data frame with 300 observations and 21 variables. Variables can be grouped in six latent concepts: 1) PERF_EXP=Performance Expectancy, 2) EFF_EXP=Effort Expectancy, 3) SUB_NORM=Subjective Norm, 4) FAC_COND=Facilitating Conditions, 5) BEH_INT=Behavioral Intention, and 6) USE_BEH=Use Behavior.

Num Variable Description

unidim 41

1	pe1	I find computers useful in my job
2	pe2	Using computers in my job enables me to accomplish tasks more quickly
3	pe3	Using computers in my job increases my productivity
4	pe4	Using computers enhances my effectiveness on the job
5	ee1	My interactions with computers are clear and understandable
6	ee2	It is easy for me to become skillful using computers
7	ee3	I find computers easy to use
8	ee4	Learning to use computers is easy for me
9	sn1	Most people who are important to me think I should use computers
10	sn2	Most people who are important to me would want me to use computers
11	sn3	People whose opinions I value would prefer me to use computers
12	fc1	I have the resources and the knowledge and the ability to make use of the computer
13	fc1	A central support was available to help with computer problems
14	fc1	Management provided most of the necessary help and resources for computing
15	bi1	I predict I will continue to use computers on a regular basis
16	bi2	What are the chances in 100 that you will continue as a computer user?
17	bi3	To do my work, I would use computers rather than any other means available
18	use1	On an average working day, how much time do you spend using computers?
19	use2	On average, how frequently do you use computers?
20	use3	How many different computer applications have you worked with or used in your job?
21	use4	According to your job requirements, indicate each task you use computers to perform?

References

Venkatesh V., Morris M.G., Davis G.B., Davis F.D. (2003) User Acceptance of Information Technology: Toward a Unified View. *MIS Quarterly*, Vol. 27 (3): 425-478.

Examples

```
data(technology)
summary(technology)
```

unidim

Unidimensionality of blocks

Description

Compute unidimensionality indices (a.k.a. Composite Reliability indices)

Usage

```
unidim(Data, blocks = NULL)
```

Arguments

D - 4 -		1.4. C	141.	1. 1
Data	matrix or	data frame	with	variables

blocks optional list with vectors indicating the variables in each block

42 wines

Value

A data frame with the following columns:

Block name of block

MVs number of manifest variables in each block

C.alpha Cronbach's alpha

DG.rho Dillon-Goldstein rho

eig.1st First eigenvalue

eig.2nd Second eigenvalue

Author(s)

Gaston Sanchez

See Also

```
alpha, rho
```

Examples

```
## Not run:
# load dataset satisfaction
data(satisfaction)

# blocks Image and Expectations
ima_expe = list(Image=1:5, Expec=6:10)

# compute unidimensionality indices
unidim(satisfaction, ima_expe)

## End(Not run)
```

wines Wines dataset

Description

These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

Usage

wines

wines 43

Format

A data frame with 178 observations and 14 variables.

Num	Variable	Description
1	class	Type of wine
2	alcohol	Alcohol
3	malic.acid	Malic acid
4	ash	Ash
5	alcalinity	Alcalinity
6	magnesium	Magnesium
7	phenols	Total phenols
8	flavanoids	Flavanoids
9	nofla.phen	Nonflavanoid phenols
10	proantho	Proanthocyanins
11	col.intens	Color intensity
12	hue	Hue
13	diluted	OD280/OD315 of diluted wines
14	proline	Proline

Source

Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets/Wine

References

Forina, M. et al, PARVUS *An Extendible Package for Data Exploration, Classification and Correlation.* Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy.

Examples

data(wines)
wines

Index

```
* datasets
                                                    plspm.fit, 21, 22
    arizona, 4
                                                    plspm.groups, 21, 25
    cereals, 5
                                                    quantiplot, 27
    college, 6
    futbol, 7
                                                    rebus.pls, 10, 12, 21, 28, 30
    mobile, 12
                                                    rebus.test, 29, 29
    offense, 14
                                                    res.clus, 9, 10, 29, 31
    orange, 15
                                                    rescale, 33
    russa, 35
                                                    rho, 3, 34, 42
    russb, 35
                                                    russa, 35
    russett, 36
                                                    russb, 35
    satisfaction, 37
                                                    russett, 36
    simdata, 38
    spainfoot, 39
                                                    satisfaction, 37
    technology, 40
                                                    simdata, 38
    wines, 42
                                                    spainfoot, 39
alpha, 3, 34, 42
                                                    technology, 40
arizona, 4
                                                    unidim, 3, 34, 41
cereals, 5
college, 6
                                                    wines, 42
futbol, 7
innerplot, 8, 17, 18, 22, 24
it.reb, 9, 29, 30, 32
local.models, 11, 29, 30
mobile, 12
offense, 14
orange, 15
outerplot, 9, 16, 18, 22
plot, 27
plot.plspm, 9, 17, 17, 24
plotmat, 8, 17, 18
plspm, 10, 17, 18, 19, 20, 26, 29, 30, 32, 33
plspm-package (plspm), 19
```